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Abstract

Based on the permeable crack model, the Green’s function of an interfacial crack between two dissimilar piezoelectric
media is first presented by means of the Stroh formalism. Then, the electric field inside the crack and the fundamental
solution of field intensity factor near the crack tips are obtained in an explicit closed-form. As special examples, several
Green’s functions are given for the cases of a crack in a homogeneous piezoelectric material, an interfacial crack be-
tween two dissimilar purely-elastic media, and a bimaterial of piezoelectric materials, respectively. It is shown in the
general case that all the field variables near the crack-tips are singular and oscillatory, and such is the case for the
electric field inside the crack when approaching to the crack-tips from on the crack faces. In addition, the relation
between the field intensity factor vector of an impermeable crack and that of a permeable crack is established in the
general cases. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With increasingly-wide application of piezoelectric materials in engineering, the crack problem in an
infinite piezoelectric medium has received considerable interest in the last years. However, to the authors’
knowledge, there is still no solution to the case of a finite-size piezoelectric material with cracks, though it is
often met in normal applications. In this case, numerical approaches may become only a reasonable al-
ternative. The boundary element method (BEM), with dual nature of analytical method and numerical
method, has been considered to be a good alternative for treating the complicated problems in piezoelectric
media. The analytical nature of BEM is reflected in its fundamental solution, i.e., Green’s function, which is
the heart of this method. Thus, it is important to study the Green’s function of piezoelectric solids. Many
efforts, indeed, have been made in this direction, which can be found in the recent works by Wang (1992),
Benveniste (1992), Chen (1993), Lee and Jiang (1994), Dunn (1994), Dunn and Wienecke (1996), Ding and
Chen (1997), Akamatsu and Tanuma (1997), Ding et al. (1997), Gao and Fan (1998a), and Dunn and
Wienecke (1999). However, it should be noted that the above cited studies were focused on a piezoelectric
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material without hole. In fact, it is more important to study the Green’s functions of an infinite (2D) pi-
ezoelectric medium containing a hole or crack. Since the presence of the hole or crack has already been
taken into account in the special Green’s functions which satisfy the boundary conditions on the hole or
crack surface (zone of the high stress concentration), it is not necessary to consider any more these
boundary conditions in BEM analyses, and therefore more accurate results can be obtained. More recently,
Liu et al. (1997), and Lu and Williams (1998) presented the Green’s functions of an infinite two-dimensional
(2D) piezoelectric material with an impermeable elliptic hole, respectively. Gao and Fan (1998b) resolved
this problem according to the exact electric boundary condition at the rim of hole and gave the Green’s
function for a permeable crack in a generally anisotropic piezoelectric medium. In their another paper, Gao
and Fan (1999) addressed a collinear permeable crack problem in a transversely isotropic piezoelectric solid
subject to the most general loading. As a special case, they presented the Green’s function of a crack.
However, Gao and Fan’s work (1998b, 1999) were for the cases where a crack is in a homogeneous pi-
ezoelectric material.

In the present work, Green’s functions are presented for the generalized 2D problems of an interfacial
crack between two dissimilar piezoelectric media by use of the extended Stroh formalism. The analysis is
still based on the permeable crack model, i.e., the crack is treated as a permeable slit and thus both the
normal components of electric displacement and the tangential component of electric field are assumed to
be continuous across the slit faces (Parton, 1976; Gao and Yue, 1998¢; Gao and Fan, 1999; Gao and Wang,
1999; Han and Chen, 1999; Wang and Han, 1999; Gao and Wang, 2000). The whole content consists of six
sections. Following this brief introduction, Section 2 outlines the Stroh formalism to be need in this paper,
and then the fundamental solutions of complex potentials and the field intensity factors are presented in
Sections 3 and 4, respectively. In Section 5 given are the solutions of several special examples, including
those of a crack in a homogeneous medium, an interfacial crack between two dissimilar purely-elastic
anisotropic materials, and a bimaterial of piezoelectric materials without crack. Finally, Section 6 concludes
the present work.

2. Stroh formalism

Consider a piezoelectric solid in a Cartesian system x; (j = 1,2, 3). Assuming that the displacement u;
and electric potential ¢ of the solid are dependent on x; and x, only, then the general solution for the
generalized 2D problem can be expressed as (Suo et al. 1992):

u = Af(z) + Af(z)
+B

- 1
¢ = Bf(z) + Bf(2) W

with
u = [uy, uy, us, QD]T7 ¢ =91, 5, 03, ¢4]T

£(z) = [fi(21), (), f3(23), fa(za)]", 2 =x1 + poxa (2= 1-4)

In the above equations, u and ¢ denote the generalized displacement function vector and stress function
vector, respectively; the overbar stands for the conjugate of a complex number; A and B are two 4 x 4
matrices which can be determined from the material constants; f,(z,) are complex potentials to be found;
the superscript T represents the transpose; p, (¢ = 1-4) are the complex eigenvalues with positive imaginary
parts; In this paper we assume that p, are distinct.

Once f(z) is obtained according to the given boundary conditions, the stress o}, electric displacement D,
and electric field E; can be given, respectively, by

o=~ op=d, (i=1,2,3) (2)
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Dy = =45, Dy = ¢y, Ey=—uy1, Er=—u (3)

where a comma indicates partial differentiation.

In the present work, we will adopt the one-complex-variable approach introduced by Suo (1990), i.e., the
arguments of each component function of f(z) are written as z = x| + px, without referring to the asso-
ciated eigenvalues u,. After the solution of f(z) is obtained, one should substitute z;, z,, z; or z4 for each
component function of f(z) to calculate field quantities.

3. The Greens functions

Consider two dissimilar piezoelectric solids, one located in the upper half space S;, and the other in the
lower half space S>. An interface cracks L. lies on the real axis x; along [—a, a], and the uncracked part in
the x;-axis is denoted L,,. Moreover, it is assumed that the crack is a traction-free, but permeable slit filled
with air or vacuum, while the upper space is subjected a line force (g0, ¢20, ¢30) associated with a line charge
qqo at an arbitrary point zg = xjo + ixy, as shown in Fig. 1.

On the crack faces, the boundary conditions can be written as

03, =0y, =0 (j=1,2,3) on L (4)

Dy =D;, El =E; onlL (5)
On the bonded part, the continuous condition requires

02:0‘2}, uj*:uj*, (j=1,2,3) on Ly (6)

Dy =D;, Ef =E; onlL, (7)
For convenience of the later use, Eqgs. (4)—(7) can be rearranged into

o;j =0y Dy =D;, —oo<x <+00 (8)

Ef =E;, —o00<x <400 )

u;.fl = u;l, on Ly (10)

a5, =0, onL (11)

For the present problem, we have
Fi(z) = 8)Guo(z) + Fo(z) (1=1,2) (12)

where F(z) = df(z)/dz; 8, stands for the Kronecker notation; F(z) is a holomorphic function vector in
Si(I=1) or S (I=2), and Fy(oc0) =0; while Go(z) is a singular function vector at the point

Z,0 = X109 + PxX20 such that
¥ qo
2
S] /
z

0

—a a X

S,

Fig. 1. An interfacial crack subjected to an arbitrary line load.
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o= {( 1))

In Eq. (13), the angular bracket ({ )) indicates the diagonal matrix in which each component is varied
according to the Greek index o, and q is a constant vector, which is determined by (Gao and Fan, 1998b)

1
= EAqu, qO = (q10741207Q3o,q40)T

Using Eq. (8), the continuity of ¢, and D, on the whole x; axis implies

q

BFi(x:) + B_1F10(X1) +BiGo(x)) +B_1G10(X1) = ByFy(x1) +B_2F20(X1) — 00 <Xx; < +00 (14)
Define an analytical function h(z) as:

h(Z) _ B]Flo(z) - EE(Z) —+ EG_W(Z), z e S] (15)
Bzeo(Z) — B1 Flo(Z) — B1G10(2)7 z e Sz

Then, Eq. (14) can be reduced to

h"(x;) —h (x;) =0 —oco<x <+ (16)
The solution of Eq. (15) is given (Muskhelishvili, 1975) by h(z) = 0, and thus Eq. (15) leads to

B]F]()(Z) — Erm(z) =+ EG_m(Z) = 0, z e S] (17)

B2F20(Z) — B_IF_IO(Z) — BlGlo(Z) =0, z€S, (18)

Further, introduce two auxiliary functions:

AU@x) = w1 (x) —wp(x) = [AlFl(Xl) + A_1F1(X1)} - [Aze(Xl) + A_ZFZ(XI)} (19)

T(Xl) = BlFl(Xl) —+ EF] (Xl) (20)
Then, using Egs. (17) and (18), Eq. (19) reduces to

iAU(x;) = H[B Fjo + H' (Y, — Y;)B; Gy — H'"HB,Fy + H' (Y, + Y, )B,Gyg] (21)
where

Y, =iAB;',  Y,=iAB,' H=Y,+Y,

Suo et al. (1992) have shown that when p, (x = 1-4) are distinct, the matrix H, which has the same
properties as Y; and Y,, is Hermitian and non-singular.
Moreover, Eq. (21) can be rewritten as

iAU(x;) = HK" (x;) — K (x1)] (22)
where K(z) is a newly introduced vector defined as

K(z) = { BiFio(2) + H™ (Y2 = Y1)B; Gyo (2) Z€ES

1ol > 23
H 'HB,Fy(z) —H ' (Y, + Y1)BiGyp(z) z€S, (23)

Noting from Egs. (9) and (10) that AU(x;) = 0 on Ly, and therefore Eq. (22) shows that except on L,
K(z) is analytic in the entire z-plane up to at infinity such that

K(o0) =0 (24)

In addition, the single-valued conditions of displacement and electric potentials means
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[uj( +a) —ul(~ a)} + [u]( —a)—u; (+a)| =0, (j=14) (25)
Eq. (25) can be rewritten as
+a —a
namely

/:—a (”]Jrl — u;l)dxl =0 (27)

Using Eq. (19), Eq. (27) can be expressed, in the form of vector, as

+a
/ AU(x;)dx; = 0 (28)
Inserting Eq. (22) into Eq. (28) leads to
%K(z) dz=0 (29)
r

where I" stands for a clockwise closed-contour closing in on the crack (in this case, z — x1).
On the other hand, using the continuous condition of E|, i.e. Eq. (9), one can obtain from Eq. (22) that

H,K"(x)) =K (x)] =0, —o0<x; <00 (30)
where

H, = (Hy1, Hiz, Hyz, Hag)
Noting Eq. (24), the solution of Eq. (30) is

H,K(z) =0 (31)

Similarly, by using Egs. (17) and (18), one can obtain from Eq. (20) that
T(x) =K (v) + H HK (v) + H (Y, + Y1)BGyo(x) + H™ (Y, + Y1) B Gro(x),
— 00 < x < 400 (32)

On the crack faces, one has from Eq. (11) that T(x;) = iyD,(x;), where iy = (0,0, 0, 1)T and D,(x;) is an
unknown function which indicates the boundary value of D,(z) on the crack faces. Hence, Eq. (32) reduces

K+(x1) + ﬁilHKi(xl) = i4D2(x1) —H I(Yl + Y_l)BlGlo(xl) - 1'171 (Y] + Y_l)B_lGlo(xl),
x| € L, (33)

Letting Q be the eigenvector matrix of ﬁle, one has

Q—lﬁleQ _ A, A= << o e—2n1(51>> _ <<62T[Sx>>’ 8, = _% +1ig, (34)
where ¢, is given by (Suo et al., 1992)
[H — e H| =0 (35)

Define a new vector R(z) as

R(z) = Q'K(2) (36)
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Then, Eq. (33) becomes
R (x1) + {{ —e ™ ))R™(x;) = MYD, (x;) = MVGyg(x;) = MPGyo(x1), x1 € L (37)
where
MY =Q'y, MY=—Q'H(Y,+Y)B, M®=Q'H(Y,+Y)B,
Eq. (37) can be expanded into
Ry (x1) — &R, (x1) = fo(x1), (x=1-4) (38)

where g, and f,(x;) are given in the Appendix A.
The solution of Eq. (38) is derived in detail in the Appendix A. The result is
1

4
S S Mg (=) ! 201
1—|—€2m°‘ /ZI j J! Z J
X, (z , : L X (Z)
+1+e2“*vl._ <1+ 2=z ) 2. ’( z—z]—»o>

L]
1+62ns1

R,(z) =

X[z 4 e (39)

where X,(z) is given by Eq. (A.10), and c{V and c(”) are constants to be determined. Using Egs. (24) and
(29), one has from Eq. (36) that

R(c0) = 0, f R(z)dz=0 (40)

r

Eq. (40) gives

R,(c0) =0, (41a)
%Rm(z)dz =0 (41b)

Taking the limit z — oo in Eq. (39), and then using Eq. (41a) yields
V=0 (42)
Substituting Eq. (39) into Eq. (41b), and then using the Gauss’ law:

%Dz(z)dz:()

and the residue theorem:

f ! dz =0, 7{ 1_ dz=0
zZ—2Zj Z—2Zj
r r
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JEOC) RO

zZ—2Zj z—z;
r
we have
A0 — (43)

Inserting Eqgs. (42) and (43) into Eq. (39) and then rewriting R,(z) in the matrix form, we have

R(z) = <<¥ >> MDD, (z) = MVGyy(z) — MPGyo(2)]

1+e2m»;y
71 3 (1) (1) - @) Oy =
(T3 ) ) @) Z<Wf +I>M Ifq+Z<Wj +I>M Lg (44)
Jj=1 j=1
where

W — diag |:Xll (z50) ’X{l (zp0) ’X{l (zp0) 7)(471 (ZJ'O)]
’ Z*Zj() Z*Zj() Z*Zj() Z*Zj()

W =diag[Xl1 (Z0) X,'(z0) X5'(2p) X41(Zj0)]

zZ—Zy ’ zZ—2Zy ' zZ—Zj ’ z—Zy
I = diag[l, 1,1, 1], I, = diag[1,0,0,0], I, = diag[0, 1,0, 0], I; = diag[0,0, 1, 0],
I, = diag[0,0,0, 1]
From Eq. (31), one has
H,QR(z) =0 (45)
Substituting Eq. (44) into Eq. (45), one can obtain the expression of D,(z). The result is

Du(e) = o HQ( (g ) )MV G + MG

& 1+ 2

- 10{ (1 ) )
where

Cp = H4Q<<ﬁ>>Q_li4

Substituting Eq. (46) into Eq. (44), one can obtain the complete expression of K(z), and then Fj(z) can be
determined by using Eq. (23). With Fj(z), all the field variables in the media can be determined by using
Egs. (1)-(3).

4

Z<w§.‘> + I>M(1>Ijq + 24:<W§2) + I>M(2>I_,-q] (46)
Jj=1

Jj=1

4. The fundamental solutions of intensity factors

For a permeable crack, noting from Eq. (22) that K" (x;) = K™ (x;) ahead of the crack tip, and then using
Egs. (32), (36), (44) and (46), one can obtain the principal part of T (r) ahead of the right crack-tip. The
result is
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4 4
T (r) = V{(X, (1)) [Z(wj” +DMILg+ > (WP I>M(2>Iﬁ] (47)
=1 =1

where r means the distance from the crack-tip; x; = a + r; and

. 1 1 1

Thus, the field intensity factor vector may be defined as

K = [kyy, ky, ko, kp)

= lim V2V () ) ( [ix +1)MV1q + 24:<w§.2) + I>M<2>Lﬁ] (48)

J=1

Substituting Eq. (A.10) into Eq. (48) yields
4 4
= VfaV{{(2a)")) _,ZI<W5'U(") + Mg + _,ZI<W«5'2)(“) + I>M<2>I,-a] (49)

If the crack is assumed to be impermeable, i.e. let D,(z) = 0, this is equivalent to letting iy be zero. Thus
J = 0. On the other hand, considering that

V= QQ‘I(I+ﬁ_lH)Q<<ﬁ>>[I+J] = Q{1 +ez’””>><<ﬁ>>[l+J]
— QI +J] (50)

we can readily give the solutions of crack-tip field and field intensity factor vector for an impermeable crack
as
' 4 4
T (1) = Q((X, (x1)) [Z<W§-” Mg+ Y (WY + M1
- =

w = aae(({ ) [in}”(cz) SIMULg 3 (W @) + I>M<z>1,q] (52)

=1

(51)

Egs. (47) and (51) show that for two crack models, the singular structures of crack-tip filed are same, but
the intensities of crack-tip filed are different. From Egs. (49), (50) and (52), we obtain the relation between
the field intensity factor vector in permeable crack model and that in impermeable crack model as:

k® = [1+QJQ 'k™ (53)

For the case of a crack in a homogeneous piezoelectric material, noting that

— 1
&=0, Q=L MY=B, MY=B, cp=Hy2 J=-,—iH (54)
44
one has from Eq. (53) that
1 )
k? = T - —iH, | k™ 55
{ ol 4} (55)

Eqgs. (53) and (55) show that if the field intensity factor vector of an impermeable crack is known, the
corresponding value of a permeable crack is easily written out.
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5. Several special examples
5.1. A permeable crack in a homogeneous medium subject to the uniform far-field loading

In this case, the field intensity factor vector of an impermeable crack is (Suo et al., 1992):
im 00 00 00 o] T
k'™ = \/na [021,022,023,D2 ] (56)

Inserting Egs. (56) into (55), one can obtain the field intensity factor vector of a permeable crack as

=mass, (j=1,2,3); = H44ZH4, (57)

which are consistent with the results of Gao and Wang (2000).

5.2. A permeable crack in a homogeneous medium subject to an arbitrary concentration loading

Since k™ for this case is not known, we directly derive the k™ from Eq. (48). Substituting Eqgs. (50) and
(54) and (A.10) into Eq. (48) gives

osmln( N manfa (- E)

«0 —a Zyp — QA

Eq. (58) can be expanded into

4
p) :2,/n/aReZqu1(1 - “Z“O—i_a) (59)
=1 Za — d
4
1z, 2/ |2
P) :2\/1’[/(1R€ZB]4aqa<1 — ZO+Z> /aZH4jRe<ZBm%< ZO—+Z>>
ot Zy) — Zu0 —

2¢/n/a 3 4 Z0 +a 1
=———"\ H;:R B 1-— =—— Y Hyk;
Hy, ]:Zl 4 K€ <; ljaqx Hu /:Zl 4,/k./ (60)

Zyo — A

Eqgs. (59) and (60) are consistent to those of Gao and Fan (1998b), who started with an elliptic hole and
obtained the corresponding solutions of a permeable crack.

5.2. An interface crack between two purely elastic media

In this case, on the crack faces one has D,(z) = 0. Noting Eq. (50) and J = 0 one can easily obtain the
corresponding complex vector R(z) and the vector of field intensity factor. The results are

R = ~({ i ) Y6+ MPG(a)] + ({1 ) Yoo

X [in}” + 1M Lg + i:<w§2> + I>M(2)Iﬁ] (61)
: -

j=1
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k— \/n_/aQ<<(2a)ig’>> [iij”(a) + I>M<‘>1jq + i<w§2>(a) + I>M(2>I,q] (62)

It should be noted in this case that all the matrices and vectors in Egs. (61) and (62) degenerate into three
degree ones.

5.3. The case of a bimaterial of piezoelectric materials without crack

In this case, the perfect connection condition along the x; axis requires from Eq. (22) that

HK (x;) — K (x1)] =0, —oc0<x; <o (63)
Using Eq. (24), we have from Eq. (63) that
K(z) =0 (64)

Substituting Eq. (64) into Eq. (23) results in
BiFio(z) =H ' (Y, - Y2)B,Gp(z), z€S
B.Fy(z) =H ' (Y; + Y1)BiGp(z), z€S
If the upper space and lower space consist of an identical material, Egs. (12) and (65) lead to
Fi(z) = Fa(z) = Gio(2) (66)

which is obvious.

6. Conclusions

The generalized 2D problem of a permeable interfacial crack between two dissimilar piezoelectric media,
one of which is subjected to a line load at an arbitrary point, is derived by using the Stroh’s formalism
combined with the technique of analytical continuations. The fundamental solutions for the Green’s
function and the field intensity factor are presented in explicit closed-form, and thus they are very useful for
solving some complicated problems in engineering. It can be found that despite the mathematical com-
plexities inherent to this problem, the present analysis is very straightforward and explicit. This is attrib-
utable to a combination of the Stroh’s formalism with the Muskhelishvili’s theory. This combination makes
the Stroh’s formalism more powerful and elegant in analyzing the generalized 2D problems of anisotropic
media, meantime it gives full play to the well-established Muskhelishvili’s theory.
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Appendix A

Eq. (37) can be expanded into
Ry (x1) — &R, (x1) = fulx1), (e =1—4) (A.1)
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where
ga — e—Zni(ﬁy — _eZn£1 (Az)
falx1) = MV Dy(x)) Z —zp) Z Z,_-o)71 (A.3)
According to Muskhehshv1h (1975, Chapter 6, 110), the general solution of (A.1) is
R,(2) = X, (2)I,(2) + X, (2)Py(x1) (A4)
where
1 o (x1)dbxy
L(z)=— | —F/——— A.
=25 | X o =2 (A3)
P(2) = ciz+ ¢} (A.6)
X(2) = (z+a) (2 - a)"! (A7)
Note
Ing, 1
P —0, = 5~ e (A.8)
1= ! ic (A9)
’y,{ - 2 24 .
Then, (A.7) can be rewritten as
1 z+a\"
Xx(z>_\/227_—‘12(z—a) (AIO)
On the other hand, (A.5) can be reduced to
I z A.ll
«(2) = lfgo(2m]{X+ (t—2z2) ( )

where ¢ is any point on I', which stands for a clockwise closed-contour closing in on the crack.
Using the Cauchy integration principle (Muskhelishvili, 1975, Chapter 4, 70), (A.11) results in

L(z) = ! [ i I +17)

1 - &x =1

(A.12)

O(

where /) and 17 are the principle parts of the j-th term of f£,(z)/X,(z), respectively, at z, and at infinity.
Con51der1ng that D,(00) = 0 and the nature of D,(zy) from (12), (1) and (4), IO and /;* can be calculated,
respectively, by

P=pYz+pY, 0= ZM n Z — ) (A.13)

00 00 00 2)—
11 = 7 12 = —Z qﬂ 13 = _ZMO((/)q] (A14)
j=1

1)
where Ciz and cﬁ2 are unknown constants.
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Substituting (A.6) and (A.12) together with (A.3), (A.13) and (A.14) into (A.4), we finally obtain

1 4 1 1

R,(z) = 15w MOD,(z) — ZMan)%' (z—z0) ZMocj 7(z—z0)

=

- X, (zp0 X, '(zp)

1 o J M o J

e e (12 ) r (1 2
=
1 1 0

where c ) and c ) are to new constants to be found.
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